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Piecewise Cubic Curve Fitting Algorithm 

By Zheng Yan 

Abstract. We give a piecewise cubic curve fitting algorithm which preserves monotonicity of 
the data. The algorithm has a higher order of convergence than the Fritsch-Carlson algorithm 
and is simpler than the Eisenstat-Jackson-Lewis algorithm. 

1. Introduction. We are interested in numerically fitting a curve through a given 
finite set of points P, = (xl, y1), i = 0, ..., n, in the plane, with 0 = x0 < xl < 
< x)1 = 1. These points can be thought of as coming from the graph of some 
function f defined on [0, 1]. We are particularly interested in algorithms which 
preserve local monotonicity of the data (or function), i.e., if Ay, := Y1+? - y, > 0, 
a < i < b, then we want the resulting interpolant to be monotone on (xa, Xb). 

The best known algorithms of this type [5], [4], generate a piecewise polynomial S 
(quadratic in [5] and cubic in [4]) such that y = S(x) is the desired interpolant. 
Here, we shall focus only on those algorithms which use C1 piecewise cubics S. The 
Fritsch-Carlson algorithm [4] and the algorithms discussed in Eisenstat, Jackson and 
Lewis [3] are of this type. These two algorithms generate a C1 piecewise polynomial 
whose knots are at the points xl, i = 1, . . ., n - 1. 

It is well known that C1 piecewise cubics can approximate a four times continu- 
ously differentiable f to an order 0(h4) with h the maximum spacing of the knots. 
We are interested here whether the curve fitting algorithms of the type described 
above can also have this order of approximation. It turns out (as was noted in [3]) 
that the FC algorithm is of order 0(h3). On the other hand, the EJL algorithm has 
the highest possible order of convergence but it is rather complicated and, in 
particular, it requires two sweeps through the data to generate the interpolant. 

The purpose of the present paper is to propose what we feel is an attractive 
alternative to these algorithms. Its main advantage over the EJL algorithm is that it 
is much simpler to implement, since it requires only a single sweep through the data 
and yet has the same monotonicity-preserving property and the same order of 
convergence. 

The typical algorithm for generating a C1 cubic interpolant which preserves 
monotonicity has the following form. It begins with some assignment of slopes s1, at 
the points x1, i = 0,..., n, which is third-order accurate when the underlying 
function f is smooth (four times continuously differentiable). After this assignment, 

Received January 14, 1986; revised April 17, 1986, August 11, 1986, and October 23, 1986. 
1980 Mathematics Subject Classification (1985 Revision). Primary 65S05; Secondary 41A15, 41A05. 
Kei words and phrases. Curve fitting algorithm, monotonicity preserving, cubic spline. 

-'1987 American Mathematical Society 

0025-5718/87 $1.00 + $.25 per page 

203 



204 ZHENG YAN 

the Hermite cubic H which interpolates the values yi and derivative values s, 
i = 0,. . . , n, is taken as the first try for the interpolant. It may happen that H does 
not agree in monotonicity with the data. This typically happens when the data 
changes slowly, i.e., where f' is small. In the FC and EJL algorithms this is overcome 
by changing the slope assignment si where this occurs. Our approach is different in 

that, rather than changing the slopes, we insert additional knots (il, {i2 in each 

interval (x/, x1 ?+) where the Hermite interpolant does not agree in monotonicity 
with the data. We then modify the interpolant so that it is a C1 cubic with respect to 

the expanded set of knots. Part of the simplicity of our algorithm comes from 

making our interpolant constant on the intervals (4i, 2). This means that the graph 
of S will possibly be flat on intervals where the underlying function has a small 
derivative. 

2. Piecewise Cubics and Monotonicity in a Single Interval for Cubic Polynomials. 
The knots of a piecewise polynomial S are the points of discontinuity of S or its 

derivatives. We are interested in piecewise cubics S which are in C'[0, 1], which 

interpolate our data (x,, yi), i = 0,..., n, and which have knots at the points xl, 
1 < i < n. Such piecewise cubics are completely determined by their values y, = 

S(x,) and their derivative values si:= S'(xi), i = 0, 1,..., n. Since S is a cubic 

polynomial on each interval [xi, xi1], which satisfies the interpolation conditions, 
the derivatives s, = S'(xi) and si+ I = S'(x1+ ) completely determine S on [xl, xi +1]. 
In fact, we have 

LEMMA 2.1. Let v: 0 = x0 < xl < ... < xn = 1 be a partition of the interval 
I = [0,1]. Let yiy} be a given set of data. Set Axi:= x+,- x1 and hi:= 

(Y. + 1- y,)/Ax1. Then for each interval [xl, x, + 1], S can be represented as 

(i) S(x)= [Si i+1 s 2,- (X2 - x]), 
(,AXi)2 

+ [-2si - s,+, + 38,] (x-xi)2 + Si(XXj +YI 

and 

(ii) S'(x) = [3(si + Si - 2(3)] (x-xi)2 

(2.1) 
~~(AXi)2- 

(2.1) + [2(-2s1 - Si,+ + 38j)] (X - xi) + Si 
Ax. 

and 

R " S,(x) = [6(s1 + sI+, - A x, ) 

+ [2(-2si-Sin l + 38X 
Axi 

Proof. This is the Newton representation for an interpolation polynomial. U 

We are interested in characterizing when S is monotone in terms of the numbers 

Si, s, + and 8. For this, we follow the analysis of Fritsch and Carlson [4]. It is clear 
that a necessary condition for monotonicity of S on Ii = [xi, xijl] is that 

(2.2) sgn(s,) = sgn(si+1,) = sgnQ1i). 
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Further, if Si = 0, then S is monotone (i.e., constant) on I, if and only if 

SI= SI+ = 0. For the remainder of this section we shall therefore assume that 

3, : 0. 
It turns out that a characterization of when S is monotone depends on the sign of 

the number a, + /,i - 2, where a1 - Si/Si, fi:= si+/3,. Then we have the following 
lemmas [4, Lemmas 1 and 2]: 

LEMMA 2.2. If a, + /3, - 2 < 0, then S is monotone on Ii if and only if (2.2) is 
satisfied. 

LEMMA 2.3. If a, + /3i -2 > 0, then S is monotone on I, if and only if (2.2) is 
satisfied and one of the following conditions is satisfied: 

(i) 2a, + /3 - 3 < 0; 
(ii) a , + 2/3i - 3 < 0; or 

(iii) 0(a,1 lPi) >, 0 
where 0(al/3) = a - (2a + /3-3)2/3(a + /3 -2). 

As a consequence of Lemmas 2.2 and 2.3, it is possible to construct a region M of 
acceptable values for a, and /3, (hence s, and Si+1) which produce a monotone 
interpolant on I,. This region is shown in Figure 2-1 along with associated exterior 
regions A, B, C, D and E. All regions are closed. We note that the curve 4 (a, /3) = 0 
is the ellipse (a - 1)2 + (a - I)(/3 - 1) + (/3 - 1)2 - 3(a + /3 - 2) = 0, which is 
tangent to the coordinate axes at (3, 0) and (0, 3) [4]. 
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FIGuRE 2-1 



206 ZHENG YAN 

The above Lemmas 2.2 and 2.3 mean that S is monotone on I, if and only if 

(Si IS+1) E Ml, where Ml = MS, = {(xSi, y8i): (x, y) e M}. 

3. Existing algorithms for monotonicity-preserving cubic interpolation. The existing 
algorithms for piecewise cubic monotonicity-preserving interpolation consist of 
assigning values si for the slopes of S at xl and then modifying these to guarantee 
monotonicity. Fritsch and Carlson give the FC algorithm which assumes that some 
reasonable initial assignment has been made for the slopes si' i = 0,1, ..., n, and 
some region W c M has been chosen with the property that if (x, y) e W and 
(u, v) < (x, y) (that is, u < x and v < y) then (u, v) is also in W. A standard choice 
of W is a square which is bounded by the four lines a = 0, 3 and /3 = 0, 3. It was 
noted by Eisenstat, Jackson and Lewis [3] that for the FC algorithm to be 
second-order accurate, the point (1, 1) must be in W; for the algorithm to be 
third-order accurate, the closed triangle with vertices (0,0), (2,0), (0,2) must be 
contained in W. 

Eisenstat, Jackson and Lewis have given two modifications of FC which improve 
the order of convergence. The first is the Two-Sweep Algorithm. In their algorithm 
they modify { si } so that each ordered pair (s, s, + 1) E Mi. This is accomplished by 
making two sweeps through the data. The first, a forward sweep, modifies only the 
second component. Then this is followed by a backward sweep which modifies the 
first component only and then guarantees that (si, Si+1) is in Ml. The two-sweep 
algorithm results in third-order convergence (that is O(h3)) when the data are 
chosen from the graph of a smooth function. The second is the Extended Two-Sweep 
Algorithm. This algorithm is even more complicated but results in fourth-order 
convergence. 

In the following section we describe what we consider to be an attractive 
alternative to these three algorithms. In contrast to the above algorithms, we will not 
modify the values of the sC. Instead, when (so s + ) is not in Ml, we shall insert two 
knots in the interval (xl, x1,+). In this simpler way, we derive a one-pass algorithm 
which has fourth-order convergence. 

4. A New Algorithm for Monotonicity-Preserving Cubic Interpolation. In this new 
algorithm, we base our curve fitting on the idea of inserting new knots. Let si be 
some initial assignment of slopes at the points xl, i = 0,..., n, such that sI is 
compatible with S,-1 and fl that is si, si+, and 8l are not of opposite signs. Let So 
be the C' cubic spline with knots {xl} which interpolates our data, that is, So 
satisfies So(x,) = yl and So(x,) = s,, i = 0,..., n. When So is not monotone on an 
interval I, := [xl, x+ I], that is when (a,, /i) t Ml, then we shall modify So on I, by 
inserting two additional knots (il. 4,2 E (x, xEi+, ). The following discussion will 
describe how these knots are chosen. Now So, So, and So' can be represented as in 
(2.1) on each interval I. We observe that the quadratic polynomial Q of (2.1)(ii) 
which represents So on (xl, x+ 1) has a unique extremum at 

(4.1) x* =x + Axxi(2a, + Al-3)/3(a, + Al-2). 

Since S(J(x,)So(x11)>0 and yet (a?,,3S) 0 M, x* must be in (xi, x +1) and we 
have 

(4.2) SO (x*) = 0(a,,PjS,. 
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We let 

(4.3) X := So'(x*), fi:= x*- xi, 71:= xI+ - x* 

Then we have ti + -q = Ax,. We note that in the case under consideration, wSi < 0 
and therefore also ws, < 0 and cos1~ < 0. To go further, we assume X < 0. The 
case X > 0 is handled similarly. Now, if s1 > s+1i then (4.1) shows that / > lAx,/2 
> -q. Similarly, if s1+1 > s1 then -q > Axi/2 > p.. We rewrite Q in terms of x* and 
a; then for some constant a we have 

(4.4) Q(x) = a(x - x*)2 + o, 

(4.5) s =aL2 +o, sI+1= aq 2 . 

Let file 412 be the new knots which we will insert: xl < All < x* < 412 < Xi+ 1. 
Our new interpolant S will be taken to have a derivative S' of the following form 

on I,: 

(Ql(x) = aj(x - )2 X < x 

(4.6) S' 0, l < x < (i2, 

(Q2(x) = a2(X - ,2 )2, 42 < X < Xi+l- 

Before proceeding to describe the parameters in (4.6), it will be useful to say a few 
words about the form of S'. We have chosen to define S' to be zero between the 
knots All and 4,2. This means that S will be constant on this interval, and therefore 
the graph will have a flat spot on this interval. We could have taken S' to be 
constant (or even more generally linear) on this interval but at the expense of 
making the algorithm more complicated. 

We shall now spell out how we will choose the new knots All and 4,2 and the 
constants a, and a2. There are actually infinitely many choices, since our only 
constraints are that S interpolates our data and the knots be in (x1,+x1 ). To 
achieve the interpolation conditions we need 

(4.7) S' = y+ - = fx; Q 

Using the form of S' given in (4.6), the first equality in (4.7) gives 

(4.8) (i - xJ)s, + (x+l - (2)s,+l = 3(yi+1 - yj) 

Similarly, starting with (4.4) and using (4.3) and (4.5), the second equality in (4.7) 
gives 

(4.8)' (si + 2c)i +?(s?+1 + 2c)i = 3(yQ +-1)y 

We choose All and 4,2 to satisfy (4.8) by letting 

(4.9) 1 = x + 3p (y, + 1 - Y) 
sp.t + s+1~1i 

and 

(4.10) (,2 = Xi+1- 
3 

+ 1 -) . 
Slit + SI+ 1n 
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There are other choices of knots which would result in fourth-order convergence, but 
the above choice, suggested by the referee, will depend continuously on the data. We 
now show that 

(4.11) xi <': (il < x* < (i2 < Xi~l 

For example, if (4.9) holds, then the left outermost inequality is clear since the 
second term on the right of (4.9) is positive. Also, using (4.8)', we have 

X -i1 = (Slj + si+1yr - 3Ayj)fi/(sjL + S1+1) 

- -2G(' + q)/(S' + si+-1'q) > 0 

because X < 0 when (as,/1) t Ml. Therefore, < < x* which is the second inequal- 
ity in (4.11). The other inequalities in (4.11) follow from a similar analysis for the 
case (4.10). 

For our algorithm we need an initial way of assigning slopes at xi, i = 0,..., n. 
For this, we let d1:= di(f ), i = 1,..., n - 2, be an approximation to f'(xi) defined 
by a four-point formula which uses the values of f at x 11, xi, x1+1, xi+2. That is, 

Ax + 
x11 

(4.12) AX1 + 1i-1 

+ (81- -l)/(/\xi + Ax,-,) -(Si+l - 81)/(Ax1+1 + Axi) x xi. 
+ l~~~~xi+ 1 + \I +Ai- 1-/ X l 

For i = 0, n - 1, n we take d, again to be a four-point formula which uses values of 
f at the four nearest points to xl. Recall that a four-point formula computes 
derivatives exactly for any cubic polynomial U, i.e., di(U) = U'(xi), i = 0, .. ., n. 

We can summarize our algorithm in the following steps. 
Step 1. Initially set si = di, i = 0, .. ., n. 
Step 2. We make sure that no two of si, 5l+ , Si are of opposite signs. That is, if 

d181 s 0, we set s1 = 0 and if dl~ldi s O we set s1~w = 0. Otherwise we still have 
s1 =di. 

Step 3. For each interval Ii in which (as, /P1) E M, S can be represented as in (2.1) 
and S is monotone on I,. 

Step 4. If (as, Pi1) t M, we choose knots (i1' (,2 by using (4.9), (4.10) and define S 
by 

a1(x - i) 3/3 + b on [x1, (i1], 

(4.13) S:= b on [ il 

a2(x - 412) /3 + b on [li2' xi+1], 

with 

a, = sI/(xX - (ij)2 a2 = S /i+l(Xi+l - (i2)2 

b:= yi - Si(x1 - 411)/3 = Yi+1- 8+l(Xi+l 
- 

4J/3. 

Then again S is monotone on I,. 

5. Convergence Order. We shall show that the algorithm described in Section 4 
gives a fourth-order approximation to monotone functions. We discuss only the case 
when f is nondecreasing. Let II - denote the supremum norm on [0,1]. We consider 
the linear functionals d,(f):= d1 with di as in Section 4 (see (4.12)). Note that 



PIECEWISE CUBIC CURVE FITTING ALGORITHM 209 

when U is a cubic polynomial, we have d,(U) = U'(xi), i = 0,..., n. Now let f be 
four times continuously differentiable with I f(4)11 = Al. Calculating the divided 
difference of f and using (4.12), we find for 1 < i < n - 2 

(5.1) f'(x1) - d, I = AxAx11_(zx + Azx1+1) [x11, xi, xl, x1+, x1+2]f 

< Mh3/12. 

In the same way, this holds for the cases i = 0, n - 1, n as well. 

LEMMA 5.1 [3, Lemma 3.2]. Iff e C1[O, 1] is monotone nondecreasing, then, for the 
slope assignments s, of Step 2, we have 

(5.2) s, > O land If'(xi)-s1 s f'(x) - d , i = O,...,n. 

LEMMA 5.2 [6, Theorem 3.6]. If H(x) is the Hermite cubic interpolation to 
f E C(4)[0, 1], then 

f'-H' |Mh3/6 on [O, 1] 

with M:= 11f (4)11 and h =: maxo , < n AX,. 

THEOREM 5.1. If f is four times continuously differentiable and monotone on [0, 1], 
then the algorithm of Section 4 generates a piecewise cubic S satisfying 

(5.3) |f- S 9Mh4. 

Proof. Let SO be the spline generated by our algorithm after Step 2 has been 
implemented, and let H be the Hermite cubic spline interpolant to f Then 

So(x,) = H(x,), i = 0,..., n, and by (5.1) and Lemma 5.1, 

(5.4) IH'(x) - So(xi) I< Mh3/12. 

Since H - S( is a cubic polynomial on [xi, xi+1], we have 

H(X)S. X) H (X) )- s?(Xi) (X X)(X,+ X)2 H(x) - S0(x) - H'x)-S(- (X - x1)x? 
(xi+1 - x1)2 

(5.5) 
+ H'(x1+1) - S(Xi+?) _x _ (-Xi+ )- 

(x1+1 - x1) )( 

From (5.5) and (5.4) we get IH(x) - S0(x)I j Mh4/6. Using the well-known error 
estimate for f - H (see [2, p. 53]), this gives 

(5.6) f(x)-SO(x) |Mh4/3. 

We also note that if we take the derivative of both sides of (5.5) and use (5.4) 
again, we have 

(5.7) H'(x) - S Mh3/2. 
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This, and Lemma 5.2, give 

(5.8) f '(x)-So'(x) I < Mh3. 

Now let S be the spline generated by our algorithm. We shall show that 

(5.9) | S' - SO" I < 8Mh3. 

Integrating and using the fact that S - S0 vanishes at xl, for i = o,..., n, gives 

IS - S011 < 8Mh4. This, together with (5.6), then proves the theorem. 
We need only check (5.9) on intervals [xl, xijl] where Step 4 has been imple- 

mented. On such an interval, S' is given by (4.6) and So' = Q is given by (4.4). We 
shall show below that, with X defined in (4.3), 

(5.10) llS' - So" I[x,,x,+, < 818WI 

Now f is monotone on [xi, xi+1] but So is not; then So'(x*)f '(x*) < 0. Hence, by 

(5.8), 

= S(x*) | So"(x)f '(x*) | Mh3, 

and assuming (5.10), this gives (5.9). We prove (5.10) only for the interval 
J:= [x,,x *]; the same estimate holds on [x*, xi+,] as well. Now (5.10) is obvious 
when s, < 41X1, since then both IS?l and IS'j are less than or equal to 41W1 on J. 
Therefore, we can assume that s, > 41 1. 

Let Q1 be as in (4.6) and x0 be the vertex of the parabola y = Q(x) - Q1(x). 
Then x0 satisfies the equation 

a(xo-X*) = -a,(xo - =. 

Also (see (4.4), (4.6)), 

(5.11) IQ(XO) - Q1(x0) I W I + IS[(XO - X*) -(XO - 411fl 

1W I + 10 1Il - X* 1- 

Now if x0 E [x,, x*] then 1I1 = la(xo - x*)l laiIl < (s, + IwI)4p. 
We claim therefore that 

(5.12) IQ(xo) - Q1(xO)I < 8c. 

Indeed, x* - - 11 - (4Ij - xi), and therefore, if (ij is chosen by (4.9), we have 

Ix* - =11=u(sj, + s,+11q - 3Ayi)j/(sifi + si+-i), and thus, by (4.8)', 

(5.13) 1x* - 4I= =j2co 1(?j + )/(silu + si+1q). 

If si < s1+1, we can replace s,+1 by s, in (5.13) and obtain Ix* - (ijj < 2jwj1/s,. 
While if s, > s+l, it follows from (4.1) that f = x* - x, > x,+1 -x* = , and 
hence f + q < 2p. Therefore, if we replace s1+I by zero and replace q by f in (5.13), 
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we obtain Ix* - <I < 4t1 w I/s1. Using this estimate for Ix* - 4ij together with our 
estimate for 6 in the line after (5.11), we have 

Q(XO) - Q1(xo) I co I + (s? + Ic 1)/M 44lU co/s, 

= co I + 41 co + 41 co121S,) 

This gives (5.12) because s, > 41w1. 
Returning now to the problem of estimating S' - on J, we note that the 

maxIS' -Sol on J is taken at one of the three points xl, x0 or x*. But at these 
points x, IS'(x) - So(x)l is smaller than 0, 81wl and 1XI, respectively; thus we have 
shown (5.10). D1 

6. Numerical Examples. We consider now the graphs generated by our algorithm 
for two of the typical data sets considered in the literature. 

AKIMA DATA [1]: 
Here n = 11, and the x's and y's are given by 

x 0 2 3 5 6 8 9 11 12 14 15 
y 10 10 10 10 10 10 10.5 15 50 60 85 

T0 0h 100 200 3 00 4 00 5 00 6 00 7 00 8 00 9 00 0o 00 10100 12 00 1300 1400 1500 

AKIMA DATA 

FIGURE 1 

Spline of 4 for AKIMA data 
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RNP 14 DATA [4]: 
Here n 9, and the x's and y's are given by 

x 7.99 8.09 8.19 8.7 9.2 1 0 
y 0 2.76429e-5 4.37498e-2 0.169183 0.469428 0.943740 

x 12 15 20 

Y 0.998636 0.999919 0.999994 

Cn 

LO 

Cu 

Th-oo 9'.00 10.00 1,1.00 1,2.00 13.00 1'4. 00 15.00 16.00 17.00 16B 00 1,9. 00 20.00 2,1 00 

RNP 14 DATA 

FIGURE 2 

Spline of 4 for RNP 14 data 

For these two examples, we see that the algorithm produces a pleasing interpolant 
when the slopes for the data do not change abruptly from a large to a small value. 
Near such an abrupt change however, the graph produced by our algorithm also 
changes quickly (apparently due to the high order of convergence) and is not as 
pleasing as those produced by some of the other standard algorithms (see, e.g., the 
sample graphs for the same data in [4]). 
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